References

Al-Homoud, A.S. and Wehr, W. (2006). Experience of Vibrocompaction in Calcareous Sand of UAE. Geotechnical and Geological Engineering, Volume 24, Number 3 / June, 2006, pp. 757-774.

Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M. and Pasqualini, E. (1986). Interpretation of CPTs and CPTUs; 2nd part: drained penetration of sands. Proceedings of the Fourth International Geotechnical Seminar, Singapore, pp. 143-56.

Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M. and LoPresti, D.C.F. (1989). Modulis of Sands from CPTs and DMTs. Proceedings, 12th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, Rio de Janeiro, Brazil, 1989, Balkema, Rotterdam, The Netherlands, pp. 165-170.

Been, K., Lingnau, B.E., Crooks, J.H.A. and Leach, B. (1987). Cone Penetration Test Calibration For Erksak (Beaufort Sea) Sand, Canadian Geotechnical Journal, 24, 4, pp. 601-610.

Been, K. and Jefferies, M.G. (1992); Towards Systematic CPT Interpretation. Proceedings Wroth Memorial Symposium, Thomas Telford, London, pp. 121–134

Begemann, H. K. S. (1965). The friction jacket cone as an aid in determining the soil profile. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, Montreal, September 8 - 15, Vol. 2, pp. 17-20.

Boulanger, R.W. and Idriss, I.M. (2014), CPT and SPT Based Liquefaction Triggering Procedures, Report No. UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California Davis, California

Burland, J.B. (1989). Small is Beautiful: The Stiffness of Soils at Small Strains, Canadian Geotechnical Journal, Vol. 26, No. 4, 1989, pp. 499-516.

Burns, S.E. and Mayne, P.W. (2002). Interpretation of Seismic Piezocone Results for the Evaluation of Hydraulic Conductivity in Clays, Geotechnical Testing Journal, Vol. 25, No. 3, 2002, pp. 333-340.

Bustamante, M. and Gianeselli, L. (1982). Pile Bearing Capacity Prediction by Means of Static Penetrometer CPT, Proceedings of the 2nd European Symposium on Penetration Testing, ESOPT-II, Amesterdam, 2, 493-500, Balkema Pub., Rotterdam.

Chen, B.S..-Y. and Mayne, P.W. (1996). Statistical Relationships Between Piezocone Measurements and Stress History of Clays, Canadian Geotechnical Journal, Vol. 33, No. 3, 1996, pp. 488-498.

Demers, D. and Leroueil, S. (2002). Evaluation of Preconsolidation Pressure and the Overconsolidation Ratio from Piezocone Tests of Clay Deposits in Quebec, Canadian Geotechnical Journal, Vol. 39, No. 1, 2002, pp. 174-192.

Fugro 1995. Descriptions of Methods and Practices, Cone Penetration Test, FEBV/CDE/APP/001 Issue 16.

Eslami, A. and Fellenius, B. H. (1997). Pile Capacity by Direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal, Vol. 34, No. 6, pp. 880-898.

Hegazy, Y.A. and Mayne, P.W. (1995). Statistical Correlations Between Vs and CPT Data for Different Soil Types, Proceedings, Symposium on Cone Penetration Testing, Vol. 2, Swedish Geotechnical Society, Linköping, Sweden, 1995, pp. 173-178.

Houlsby, G.T. and Teh, C.I. (1988). Analysis of piezocone in clay. Proceedings of the International Symposium on Penetration Testing, ISOPT-1, Orlando, 2, 777-83, Balkema Pub., Rotterdam.

Idriss, I.M. and Boulanger, R.W. (2008). Soil liquefaction during earthquakes, Earthquake Engineering Research Institute, MNO-12.

International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) (2001). International Reference Test Procedure for the Cone Penetration Test (CPT) and the Cone Penetration Test with pore pressure (CPTU), Report of the ISSMGE Technical Committee 16 on Ground Property Characterisation from In-situ Testing, 1999 (corrected 2001).

Jamiolkowski, M., LoPresti, D.C.F. and Manassero, M. (2003). Evaluation of Relative Density and Shear Strength of Sands from Cone Penetration Test and Flat Dilatometer Test, Soil Behaviour and Soft Ground Construction (GSP 119), American Society of Civil Engineers, Reston, Va., pp. 201-238.

Jefferies, M.G. and Been K (2006). Soil liquefaction - A critical state approach, Taylor & Francis

Jefferies, M.G. and Davies, M.P. (1993). Use of CPTu to Estimate Equivalent SPT N60, Geotechnical Testing Journal, Vol. 16, No. 4, Dec. 1993, pp. 458-468.

Kayen, R., Moss, R.E.S., Thompson, E.M., Seed, R.B., Cetin, K.O., Der Kiureghian, A., Tanaka, Y. and Tokimatsu, K. Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential. Journal of Geotechnical and Geoenvironmental Engineering, Volume 139, Issue 3, March 1, 2013, pages 407-419.

Keaveny, J.M. and Mitchell, J.K. (1986). Strength of Fine-Graining Soils Using the Piezocone, Use of In Situ Tests in Geotechnical Engineering (GSP 6), American Society of Civil Engineers, Reston, Va. 1986, pp. 668-699.

Kulhawy, F.H. and Mayne, P.H. (1990). Manual on estimating soil properties for foundation design. Electric Power Research Institute, EPRI, August, 1990.

Lunne, T. Robertson, P. K., Powell, J.J.M (1997). Cone Penetration Testing in Geotechnical Practice, Spoon Press.

Mayne, P.W. (2001). Stress-Strain-Strength-Flow Parameters from Enhanced In-Situ Tests, Proceedings, International Conference on In-Situ Measurement of Soil Properties and Case Histories, Bali, Indonesia, 2001, pp. 27-48

Mayne, P.W. (2005). Integrated Ground Behaviour: In-Situ and Lab Tests, Deformation Characteristics of Geomaterials, Vol. 2 (Proc. Lyon, France), Taylor & Francis, London, United Kingdom, 2005, pp.155-177.

Mayne, P.W. (2006). The 2nd James K. Mitchell Lecture: Undisturbed Sand Strength from Seismic Cone Tests, Geomechanics and Geoengineering, Vol. 1, No. 4, 2006, pp. 239-247.

Mayne, P. W. (2007). NCHRP Synthesis 368, Cone Penetration Testing, Transport Research Board, Washington D.C.

Mayne, P.W. and Stewart, H.E. (1988). Pore Pressure Response of K0 Consolidated Clays, Journal of Geotechnical Engineering, Vol. 114, No. 11, 1988, pp. 1340-1346.

Mayne, P.W. and Rix, G.J. (1995). Correlations Between Shear Wave Veolicaty and Cone Tip Resistance in Clays, Soils & Foundations, Vol. 35, No. 2, 1995, 107-110

Mayne, P.W. and Brown, D.A. (2003). Site Characterization and Engineering Properties of Natural Soils, Vol. 2, Swets and Zeitlinger, Lisse, The Netherlands, 2003, pp. 1323-1339.

Mayne, P.W. and Campanella, R.G. (2005). Versatile Site Characterization by Seismic Piezocone, Proceedings, 16th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 2 (Osaka), Millpress, Rotterdam, The Netherlands, 2005, pp. 721-724.

Mesri, G. and Abdel-Ghaffar, M. (1993). Cohesion Intercept in Effective Stress Stability Analysis, Journal of Geotechnical Engineering, Vol. 119, No. 8, 1993, 1229-1249.

Moss, R. E., Seed, R. B., Kayen, R. E., Stewart, J. P., Der Kiureghian, A. and Cetin, K. O. (2006). CPT-Based Probabilistic and Deterministic Assessment of In Situ Seismic Soil Liquefaction Potential. Journal of Geotechnical and Geoenvironmental Engineering. Volume 132 Issue 8, August 2006, ASCE

Rad, N.S. and Lunne, T. (1986). Correlations between piezocone results and laboratory soil properties. Norwegian Geotechnical Institute, Oslo, Report 52155-39.

Ramsey, N. (2002). A Calibrated Model for The Interpretation Of Cone Penetration Tests (Cpts) In North Sea Quaternary Soils. Proceedings of OSIG Conference, November 26 - 28, 2002, London, UK

Rix, G.J and Stokoe, K.H. (1992). Correlation of Initial Tangent Modulus and Cone Resistance, Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, pp. 351-362, Elsevier

Robertson, P.K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-8.

Robertson, P.K. (2009). Performance based earthquake design using the CPT., Keynote lecture, IS-Tokyo

Robertson, P.K (2010). Estimating in-situ soil permeability from CPT & CPTu, Gregg Drilling & Testing Inc., Signal Hill, California, USA, CPT 10, paper 2-51.

Robertson, P.K (2010). Soil behaviour type from the CPT: an update, Gregg Drilling & Testing Inc., Signal Hill, California, USA, CPT 10, paper 2-56.

Robertson, P.K. and Campanella, R.G. (1983). Interpretation of Cone Penetration Tests: Sands, Canadian Geotechnical Journal, Vol. 20, No. 4, 1983, pp. 719-733.

Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J. (1986). Use of piezometer cone data. Proceedings of the ASCE Specialty Conference In Situ '86: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, 1263-80, American Society of Engineers (ASCE).

Robertson, P.K and Wride, C.E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test, Canadian Geotechnical Journal 35 (3), pp. 442-459.

Robertson, P.K. and Cabal, K.L. (2009). Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing Inc., 3rd Edition, January 2009.

Schmertmann, J.H. (1978). Guidelines for cone penetration test, performance and design. US Federal Highway Administration, Washington, DC, Report, FHWA-TS-78-209, 145.

Schneider, J.A., Randolph, M.F., Mayne, P.W., and Ramsey, N. (2008). Analysis of factors influencing soil classification using normalised piezocone tip resistance and pore pressure parameters. Journal of Geotechnical and Geoenvironmental Engineering, November 2008, pp 1569-1586

Sully, J. P., Robertson, P. K., Campanella, R. G., and Woeller, D. J. (1999). An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils. Canadian Geotechnical Journal, 36, pp 369-381.

Shuttle, D.A., and Jefferies, M.G. (1998). Dimensionless and Unbiased CPT Interpretation in Sand. International Journal of Numerical and Analytical Methods in Geomechanics, 22, 351–391.Terzaghi, K., Peck, R. and Mesri, G. (1996). Soil Mechanics in Engineering Practice, 3rd ed., John Wiley & Sons, New York, N.Y., 1996.

Tonkin & Taylor (2013), "Liquefaction Vulnerability Study", T&T Ref: 52020.0200/v1.0

Trak, B., LaRochelle, P., Tavenas, F., Leroueil, S. And Roy, M. (1980). A New Approach to the Stability Analysis of Embankments on Sensitive Clays, Canadian Geotechnical Journal, Vol. 17, No. 4, 1980, pp. 526-544.

Youd, T., Idriss, I., Andrus, R., Arango, I., Castro, G., Christian, J., Dobry, R., Finn, W., Harder, L., Hynes, M., Ishihara, K., Koester, J.,Liao, S., Marcuson, W., Martin, G., Mitchell, J., Moriwaki, Y., Power, M., Robertson, P., Seed, R., and Stokoe, K. (2001). "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils." J. Geotech. Geoenviron. Eng., 127(10), 817–833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)Wroth, C.P. (1984). The Interpretation of In-Situ Soil Tests, Geotechnique, Vol. 34, No. 4, Dec 1984, pp. 449-489.

Youd, T. Leslie; Hansen, Corbett M.; Bartlett, Steven F. (2002). "Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement". Journal of Geotechnical and Geoenvironmental Engineering 128 (12): 1007–1017.

Zhang, G., Robertson, P.K. and Brachman, R.W.I. (2002). Estimating Liquefaction-Induced Ground Settlements from CPT for Level Ground. Canadian Geotechnical Journal, 39, pp 1168-1180.